Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 265: 106743, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931377

RESUMO

Plastics, particularly microplastics (MPs) and nanoplastics (NPs), have been regarded as pollutants of emerging concern due to their effects on organisms and ecosystems, especially considering marine environments. However, in terms of NPs, there is still a knowledge gap regarding the effects of size and polymer on marine invertebrates, such as benthic organisms. Therefore, this study aimed to understand, regarding behavioural, physiological, and biochemical endpoints (neurotransmission, energy metabolism, antioxidant status, and oxidative damage), the effects of 50 nm waterborne polymethylmethacrylate (PMMA) NPs (0.5 to 500 µg/L) on the marine benthic polychaete Hediste diversicolor, a key species in estuarine and coastal ecosystems. Results demonstrated that worms exposed to PMMA NPs had a shorter burrowing time than control organisms. Nevertheless, worms exposed to PMMA NPs (0.5 and 500 µg/L) decreased cholinesterase activity. Energy metabolism was decreased at 50 and 500 µg/L, and glycogen content decreased at all concentrations of PMMA NPs. Enzymes related to the antioxidant defence system (superoxide dismutase and glutathione peroxidase) displayed increased activities in H. diversicolor specimens exposed to concentrations between 0.5 and 500 µg/L, which led to no damage at the cell membrane and protein levels. In this study, polychaetes also displayed a lower regenerative capacity when exposed to PMMA NPs. Overall, the data obtained in this study emphasize the potential consequences of PMMA NPs to benthic worms, particularly between 0.5 and 50 µg/L, with polychaetes exposed to 50 µg/L being the most impacted by the analysed NPs. However, since sediments are considered to be sinks and sources of plastics, further studies are needed to better understand the impacts of different sizes and polymers on marine organisms, particularly benthic species.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Polimetil Metacrilato/toxicidade , Polimetil Metacrilato/metabolismo , Microplásticos/metabolismo , Plásticos , Ecossistema , Poluentes Químicos da Água/toxicidade
2.
Environ Res ; 214(Pt 2): 113764, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35803342

RESUMO

Plastic pollution is a serious problem in aquatic systems throughout the world. Despite the increasing number of studies addressing the impact of macro- and microplastics on biota, there is still a significant knowledge gap regarding the effects of nanoplastics alone and in combination with other contaminants. Among the aquatic contaminants that may interact with nanoplastics is arsenic (As), a metalloid found in estuarine and coastal ecosystems, pernicious to benthic organisms. This study aimed to understand how a parental pre-exposure to 100 nm polystyrene nanoplastics (PS NPs) would influence the response of Hediste diversicolor to exposure to arsenic in terms of behaviour, neurotransmission, antioxidant defences and oxidative damage, and energy metabolism. The obtained data revealed an increase in burrowing time and a significant inhibition in cholinesterase activity in all polychaetes exposed to As, regardless of the pre-exposure to PS NPs. Oxidative status was altered particularly in parentally exposed organisms, with damage detected in terms of lipid peroxidation at 50 µg/L and protein carbonylation at 50 and 250 µg As/L exposed organisms when compared to control. Overall, data shows that parental pre-exposure to plastics influences the response of aquatic organisms, increasing their susceptibility to other contaminants. Thus, more studies should be performed with other environmental contaminants, to better understand the potential increased risk associated with the presence of nanoplastics to aquatic ecosystems.


Assuntos
Arsênio , Poliquetos , Poluentes Químicos da Água , Animais , Arsênio/toxicidade , Ecossistema , Microplásticos , Plásticos/toxicidade , Poliestirenos , Poluentes Químicos da Água/análise
3.
Environ Pollut ; 299: 118869, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063544

RESUMO

Numerous applications exist for graphene-based materials, such as graphene oxide (GO) nanosheets. Increased concentrations of GO nanosheets in the environment have the potential to have a large negative effect on the aquatic environment, with consequences for benthic organisms, such as polychaetes. The polychaete Hediste diversicolor mobilises the sediments, hence altering the availability of contaminants and the nutrients biogeochemical cycle. As such, this study proposes to assess the effects of different GO nanosheet concentrations on the behaviour, feeding activity, mucus production, regenerative capacity, antioxidant status, biochemical damage and metabolism of H. diversicolor. This study evidenced that H. diversicolor exposed to GO nanosheets had a significantly lower ability to regenerate their bodies, took longer to feed and burrow into the sediment and produced more mucus. Membrane oxidative damage (lipid peroxidation) increased in exposed specimens. The increased metabolic rate (ETS) evidenced a higher energy expenditure in exposed organisms (high use of ready energy sources - soluble sugars) to fight the toxicity induced by GO nanosheets, such as SOD activity. The increase in SOD activity was enough to reduce reactive oxygen species (ROS) induced by GO on cytosol at the lowest concentrations, avoiding the damage on proteins (lower PC levels), but not on membranes (LPO increase). This study revealed that the presence of GO nanosheets, even at the lower levels tested, impaired behavioural, physiological, and biochemical traits in polychaetes, suggesting that the increase of this engineered nanomaterial in the environment can disturb these benthic organisms, affecting the H. diversicolor population. Moreover, given the important role of this group of organisms in coastal and estuarine food webs, the biogeochemical cycle of nutrients, and sediment oxygenation, there is a real possibility for repercussions into the estuarine community.


Assuntos
Grafite , Poliquetos , Poluentes Químicos da Água , Animais , Grafite/metabolismo , Grafite/toxicidade , Peroxidação de Lipídeos , Poliquetos/metabolismo , Poluentes Químicos da Água/metabolismo
4.
Mar Environ Res ; 159: 105013, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32662441

RESUMO

The contamination of aquatic environments has been the focus of research to understand effects on ecosystems and its species. Benthic organisms are considered potential targets since sediments act as sources and sinks for environmental contaminants. This review presents information on the effects of three types of emerging contaminants: pharmaceuticals (tested concentrations between 0.1 ng/L - 250 mg/L and 0.01 ng/g - 2.5 µg/g), metal-based nanoparticles (<100 nm) (tested concentrations between 10 µg/L - 1 mg/L and 5 - 140 µg/g) and micro(nano)plastics (tested concentrations between 5 µg/L - 50 mg/L and 10 - 50 mg/kg), on the polychaete Hediste diversicolor, a key species in estuarine/coastal ecosystems. Data shows that these contaminants promote alterations in burrowing activity (lowest concentration inducing effects: 10 ng/L), neurotransmission and damage related parameters (lowest concentration inducing effects: 100 ng/L). The characteristics of this polychaete, such as regenerative capacity, make the use of this species in biomedical studies involving environmental contaminants valuable.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Plásticos
5.
Sci Total Environ ; 707: 134434, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31863996

RESUMO

Plastic debris has been reaching the world's oceans since it started being used. Multiple studies have been addressing the effects of microplastics in various organisms but, despite the increased scientific awareness, there is still a significant gap in knowledge when it comes to small-sized plastic particles of sizes below 100 nm. The aim of this study was to understand the effect of waterborne 100 nm polystyrene nanoplastics (PS NPs) on the marine polychaeta Hediste diversicolor, a keystone species in intertidal and coastal environments, in terms of behavior, neurotransmission, oxidative status, energy metabolism and oxidative damage. Results of PS NPs characterization showed an aggregation along the time and with increasing concentrations. Results also revealed a considerable impact of PS NPs on ecologically relevant endpoints like cholinesterase (ChE) and burrowing, but no increases in most of the parameters associated with oxidative stress. Protein carbonylation was found to be more sensitive to PS NPs effects than lipid peroxidation. Behavioral alterations induced by PS NPs may affect nutrient cycling and (endo-)benthic fauna. The data revealed in this study highlighted the potential consequences of NPs to benthic organisms and the need for further studies.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Estresse Oxidativo , Plásticos , Poliestirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...